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Abstract: In view of the problem of synthetic evaluation of power quality, considering that measured data of 

observation points vary during monitoring period, their values may be clear numbers, interval numbers and 

linguistic assessment terms. At the same time, considering that the decision makers have certain expectations for 

the power quality index, a hybrid multi-attribute synthetic evaluation method of power quality based on prospect 

theory and membership grade is proposed. Firstly, Decision matrix with clear numbers, interval numbers and 

linguistic assessment terms is transformed into a prospect decision matrix according to the expectation of each 

attribute. Then, variable fuzzy pattern recognition model is established according to the generalized weighted 

Euclidean distance between each alternative and decision expectation. Thirdly, optimal membership grade and 

corresponding attribute weight of each alternative are obtained by means of building a Lagrange relaxation 

function to carry out the cross iterative calculation. Finally, by synthesizing accumulative prospect value and 

membership grade, ranking results of each alternative is determined according to comprehensive prospect value. 

Synthetic evaluation of power quality is realized. 

 
Keywords  Power quality, Prospect theory, Membership grade, Multi-attribute decision making. 

 

INTRODUCTION 

Synthetic evaluation of power quality is an 

important means to quantify level of power quality. It 

is the process of evaluating power quality 

characteristics and checking and judging whether they 

meet standard requirements based on actual 

measurement of electrical operating parameters of 

power system or basic data obtained by modeling and 

simulation [Lin, et. al., 2013]. Traditional methods 

usually treat measured data of power quality 

monitoring points as the clear numbers, but measured 

data of monitoring points in a monitoring period are 

often changed. Measured data may be the clear 

numbers or the interval numbers. Even value of some 

indexes may be linguistic assessment terms. Synthetic 

evaluation of power quality is essentially an uncertain 

multi-attribute decision making problem [JIN, et. al., 

2016]. Synthetic evaluation of power quality is a 

decision-making process based on limited rational 

behavior of decision makers. Under uncertain 

conditions, decision makers value benefits and losses 

relative to a certain reference point rather than final 

total value. Therefore, using prospect theory to deal 

with synthetic evaluation of power quality has some 

advantages. 

Currently synthetic evaluation methods of power 

quality mainly include fuzzy mathematics theory[Jia, 

et. al., 2000], probability and statistics theory [Jiang, 

et. al., 2003] , clustering theory [JIANG, et. al., 2012], 

catastrophe decision theory [Zeng, et. al., 2003], D-S 

evidence theory [Chen, et. al., 2012], neural network 

[Zhou, et. al., 2007] and so on. In reference 

[Salarvand, et. al., 2010], a two-level evaluation 

method was proposed to determine the membership 

function and membership grade of power quality 

indexes and final result was obtained by fuzzy 

comprehensive evaluation method. In reference, a 

method of power quality quantization and evaluation 

based on daily period was proposed. Main 

characteristics of power quality were described by 

using probability statistical eigenvalue and 

comprehensive quantitative evaluation index of power 

quality was obtained. In reference, using fuzzy 

clustering analysis, known data points of power 

quality grade were added to sample data set for cluster 

analysis, and power quality grade of data points to be 

evaluated was determined according to the principle 

of "similar clustering". In reference, synthetic 

evaluation method of power quality based on 

catastrophe decision theory was proposed. 

Catastrophe model was used to calculate the abrupt 

progression at all levels, which avoided power 

indexes weighting and reduces subjectivity of 

decision making. In reference, D-S evidence theory 

was used to improve accuracy of each element of 

judgment matrix and to reflect the comprehensiveness 

of evaluation object, thus improving accuracy of 

evaluation results. In reference [Liu, et. al., 2007], 

evaluation of power quality based on artificial neural 

network did not need artificial weighting and avoided 

the influence of subjective factors. However, the 

reliability of evaluation results was reduced because 

of inability to investigate weight of power quality 

indexes. 

Based on the above researches, in the current 

synthetic evaluation of power quality, there are lack 

of researches on uncertain multi-attribute decision 

making whose attribute values are clear numbers, 

interval numbers and linguistic assessment terms and 
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attribute weights are unknown. A hybrid power 

quality multi-attribute decision making method based 

on prospect theory[14-16]p12 and membership grade is 

proposed in the paper. 

 

PROSPECT THEORY 

Hybrid data type 

There is a hybrid multi-attribute decision making 

problem where the scheme set is  1 2, , , mA A A A L , the 

attribute set is  1 2 n, , ,B B B B L , the decision matrix 

is
ij m n

C C


   
, and the decision maker gives the 

expectation vector about the attribute  1 2 n, , ,E E E E L  

according to the existing information and expectation 

of the future. Where 
iA  represents the i  alternative, 

jB  represents the j  attribute, 
ijC  represents the value 

of the j  attribute of the i  alternative, and each 

attribute is independent of each other.  

As a hybrid multi-attribute decision making 

problem, attributes will include clear numbers, 

interval numbers and linguistic assessment terms, 

which are represented NC 、 IC 、 LC in sequence. 

Obviously, N I LC C C CU U , where attribute value 

of NC are an exact number, the attribute value of 
IC are an interval number, and the attribute value of 
LC is a linguistic assessment terms, as follows: 

(1) When N

jC C , =j jC B , where 
jB is real 

numerical value and Supposes 0jB  .  

(2)When I

jC C , = ,L U

j j jC B B  
, where 

L

jB , U

jB are real numerical value and 

Supposes 0U L

j jB B  . 

(3)When L

jC C , =j jC B  , where 
jB S .Because 

it is difficult to for LC  to use numerical measure, S is 

a predefined linguistic state set  = 0,1, ,fS S f T L , 

where 
fS  represents the 1f   linguistic assessment 

terms of S . T  is even and S  contains 1T   elements. 

When 6T  ,  0 1 2 3 4 5 6= , , , , , ,S S S S S S S S , the 

corresponding "very poor, poor, medium poor, 

medium, good, very good" seven states, recorded as 

 = , , , , , ,S VP P MP M MG G VG . To facilitate the 

processing and computation of linguistic assessment 

terms, converting linguistic assessment terms into the 

corresponding triangular fuzzy numbers. if =j fC S ,       

 

      

= , ,

max 1 ,0 , ,min 1 ,1

L M U

j j j jC B B B

f T f T f T



 

        (1) 

Data normalization processing 

In hybrid multi-attribute decision making problem, 

the attributes are divided into benefit type 
BB  and cost 

type
CB , respectively. The greater attribute value are, 

the better benefit types are. The smaller attribute 

value are, the better cost types are. In order to 

eliminate influence of different physical dimension on 

decision results, it is necessary to normalize 

expectation vector and decision matrix. When 

 1,2 ,M m L，  and  1,2 ,N n L， . Because of the 

different attribute types, the data needs to be 

normalized as follows: 

(1)When N

jC C , i M , as   max maxj ij jP C E  ， , 

  min minj ij jP C E  ， , normalized calculation 

formula is as follows: 

   

   
'

,

,

j ij j j B

ij

ij j j j C

P C P P j B
C

C P P P j B

  

  

   
 

  

               (2) 

   

   
'

,

,

j j j j B

j

j j j j C

P E P P j B
E

E P P P j B

  

  

   
 

  

     (3) 

(2)When I

jC C , i M , as   max max U U

j ij jP C E  ， , 

  min min L L

j ij jP C E  ， , normalized calculation 

formula is as follows: 

       

       

, ,
,

, ,

U U U L U L U L

j ij j j j ij j j B
L U

ij ij
L L U L U L U L

ij j j j ij j j j C

P C P P P C P P j B
C C

C P P P C P P P j B

     
 

    
      

 (4) 

       

       

, ,
,

, ,

U U U L U L U L

j j j j j j j j B
L U

j j
L L U L U L U L

j j j j j j j j C

P E P P P E P P j B
E E

E P P P E P P P j B

     
 

    
      

 (5) 

(3) When L

jC C , i M , 
ijC  and 

jE  are converted 

triangular fuzzy numbers according to formula (1). 

Decision matrix is ' '

ij m n
C C


   

 and expectation vector 

is  ' ' ' '

1 2, , , nE E E E L after data normalization 

processing. 

Determining prospect decision matrix 

In prospect theory, decision makers will measure 

the "gain" or "loss" of each attribute according to 

reference points. Therefore, it is necessary to compare 

attribute values and expectation attributes of each 

alternative, determine size relationship of alternatives 

between each attribute and reference point, and 

calculate the Euclidean distance between each 

attribute and reference point to determine the prospect 

decision matrix 
ij m n

V V


   
. Due to different types of 

attributes, comparison methods are different. The 

specific comparison methods are as follows:  

(1) When N

jC C , directly comparing the size 

between '

ijC  and '

jE . 
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(2) When I

jC C , as    ' ' 2L U

ij ij ijS C C C  , 

   ' ' 2L U

j j jS E E E  ,   ' 'U L

ij ij ijK C C C  , 

  ' 'U L

j j jK E E E  . When    ij jS C S E , if 

   ij jS C S E , ' '

ij jC E . If    ij jS C S E , 

' '

ij jC E . When    ij jS C S E , if    ij jK C K E , 

' '

ij jC E . if    ij jK C K E , ' '

ij jC E  if 

   ij jK C K E , ' '

ij jC E . 

(3) When L

jC C . If ' '

ij jC Ef , ' '

ij jC E . If ' '

ij jC Ep , 

' '

ij jC E . Else 
' '

ij jC E . 

   To further calculate Euclidean distance 
ijD  

between attribute values '

ijC  of each scheme and 

expectation attribute '

jE , when i M , the formula is: 

   

     

' '

2 2
' ' ' '

2 2 2
' ' ' ' ' '

,

= 2,

3,

N

ij j

L L U U I

ij ij j ij j

L L M M U U L

ij j ij j ij j

C E j C

D C E C E j C

C E C E C E j C


 


        

          

(6) 

Each scheme is judged "gain" or "loss" relative to 

expectation attribute according to size of '

ijC  and '

jE . 

Under i M , when ' '

ij jC E , the j  attribute of the i  

scheme is benefit relative to expectation attribute '

jE . 

When ' '

ij jC E , the j  attribute of the i  scheme is 

lost relative to the expectation attribute '

jE . Taking 

into account different risk attitudes of decision makers 

towards gains and losses, a prospect decision matrix is 

established, in which prospect value  ijV C  of the j  

attribute of the i  scheme is represented. The 

calculation formula is as follows:  

 
 

 

' '

' '

,

,

ij ij j

ij

ij ij j

D C E
V C

D C E







 
 
   


     (7) 

Where   and   respectively represent bump 

degree of value function  ijV C in benefit region and 

loss region and 0 1  , 0 1  . It can be found 

that decision maker is a concave function in the face 

of benefit, showing a risk repugnance and a convex 

function in the face of loss, showing a risk preference. 

The larger the value of   and   are, the more 

inclined decision makers are to take risks.   

represents loss avoidance coefficient of decision 

makers and 1  . The larger the value of   is, the 

greater the degree of loss avoidance of decision 

makers in the face of loss. 

MEMBERSHIP GRADE AND COMPREHENSIVE 

PROSPECT VALUE 

Membership grade and attribute weights 

The comparison of schemes can only be 

distinguished under the same criterion. The 

cumulative prospect value of each scheme must come 

from weight vector of same attribute. Therefore, 

variable fuzzy pattern recognition model[17]p4 is used 

to determine the membership grade and attribute 

weight vector of each scheme and decision 

expectation. 

According to calculation method of distance 
ijD  

proposed by formula (6),  0,1ijD  . When 0ijD  , 

the gap between the j  attribute of the i  scheme and 

expectation value of the j  attribute of decision 

makers is smaller, and when 1ijD  , the gap between 

the j  attribute of the i  scheme and expectation value 

of the j  attribute of decision makers is greater. So a 

two-level opposed fuzzy recognition center 

2hj n
S s


   

 is set up, in which  1,2h  . When 1h  , 

0hjs   represents the optimal attribute set. When 

2h  , 1hjs   represents the worst attribute set. 

 
2hi m

U u


  is denoted as a membership grade 

matrix, in which the membership grade 
hiu  between 

the i  scheme and the fuzzy recognition center is 

expressed. When 
ij ijr D , in order to solve optimal 

membership grade *

hiu  and optimal weight vector * of 

alternative scheme and class center, relative 

membership grade 
hiu  and attribute weight vector   

are introduced. If generalized weighted Euclidean 

distance between alternative scheme and expectation 

vector is recorded as  ,f u , the weighted 

generalized Euclidean distance between the i  scheme 

and fuzzy recognition center is:  

 

   

 

2
2 2

1 1

2 2
2

1 1

,
n

i hi j ij hj

h j

n

hi j ij hj

h j

f u u r s

u r s

 



 

 

  
      

  

 
      

 

 

 

          (8) 

Obviously, the smaller  ,if u  is, the smaller the 

difference between the i  scheme and expectation 

target is and the better the recognition of expectation 

vector is.  ,F u   is regarded as the difference 

between each scheme and all reference points, then 

       1 2, , , , , , ,mF u f u f u f u      L . 

Since there is no focus relationship between the 
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alternatives, optimization model is established as 

follows: 

     
2 2

2

1 1 1 1

min , ,
m m n

i hi j ij hj

i i h j

Z F u f u u r s  
   

      
   

   (9) 

under certain constraints: 
2

1

1hi

h

u


 ，0 1hiu  ，
1

1
n

j

j




 ，0 1j   

For the optimization problem, Lagrangian relaxation 

function is established. 

   
2 22

2

1 1 1 1 1

, , , 1 1
m n n

u hi j ij hj u hi j

i h j h j

L u u r s u       
    

  
           

   
   

  (10) 

When 0L u   ， 0L    ， 0uL    ，

0L    ，then 

 

 

1
2

2
1

2
1

1

n

j ij jh

j

hi n
k

j ij jk

j

r s

u

r s













  
        

        





     (11) 

 

 

1
2 2

1 1

2 2
1

1 1

m

hi ij jhn
i h

j m
k

hi ij kh

i h

u r s

u r s





 



 

  
     

   
   

     





   (12) 

In order to obtain optimal membership matrix *

hiu  

and weight vector *

j , the cyclic iteration method in 

the variable fuzzy pattern recognition model is used to 

solve the problem in the paper.  

Ranking and optimal selection 

In prospect theory, attribute value of each scheme 

can be judged as "benefit" or "loss" according to 

prospect decision matrix. If attribute weight adopts 

weight vector  *

1 2, , , ,j n     L L  in variable 

fuzzy iteration, cumulative prospect value  P A  of 

each scheme can be calculated according to 

cumulative prospect theory[18]. The formula of the 

cumulative prospect value of the scheme can be 

calculated: 

   
1

,
n

i j ij

j

P A V c i M


                (13) 

In formula (13), the value of  ijV c  is calculated 

according to formula (7). If only cumulative prospect 

value of the scheme is considered, it is obvious that 

the bigger  iP A  is, the better scheme 
iA  is. The 

scheme can be sequenced according to value of  iP A .          

In variable fuzzy pattern recognition model, the 

optimal membership matrix *

hiu  after cross-cycle 

iterative calculation reflects degree of proximity 

between each scheme and decision expectation. When 

1h  , membership grade *

hiu  of each scheme and 

decision expectation is represented. Set  iU A  as 

membership grade between scheme 
iA  and decision-

makers expectation, then   *

1i iU A u . The larger 

 iU A  is, the higher membership grade of scheme 
iA  

is. If we only consider membership grade of schemes, 

we can sort it according to value of  iU A . 

Because prospect value and membership grade 

reflect the relationship between schemes and decision 

expectation from two angles, decision should be 

considered synthetically. If cumulative prospect value 

of scheme 
iA  is larger and membership grade is lower, 

it indicates that prospect value of scheme 
iA  is better. 

But deviation is large from decision expectation, so 

scheme 
iA  is not the best. If cumulative prospect 

value of scheme 
iA  is lower and membership grade is 

higher, it indicates that it is close to expectation of 

decision makers. But prospect value is poor, scheme 

iA  is not optimal either. If and only if cumulative 

prospect value of scheme 
iA  is higher and 

membership grade is higher, scheme 
iA  is better. 

Therefore, cumulative prospect value and membership 

grade of each scheme are considered synthetically in 

the paper, that is, the comprehensive prospect value is 

recorded  S A . Each scheme is sorted and selected. 

The calculation formula is as follows: 

 
     

     

, 0

1 0

i i i

i

i i i

P A U A P A
S A

P A U A P A

 
 

     

当

，当
     (14) 

Comprehensive prospect value in formula (14) 

takes into account influence of accumulative prospect 

value on positive values and negative values. The 

bigger comprehensive prospect value  iS A  is, the 

better scheme 
iA  is.  

EXAMPLE APPLICATION 

In this paper, first of all, the seven power quality 

standards of the State Grid are taken as the basis for 

the comprehensive evaluation of power quality. The 

seven evaluation indexes[12]p8 include voltage 

deviation
1f , voltage fluctuation 

2f , voltage flicker 
3f  

and voltage sag 
4f , three-phase unbalance 

5f , voltage 

harmonic 
6f  and frequency deviation 

7f . These index 

values belong to the interval numbers. Then reliability 

index and service index of power supply are 

considered. Reliability index of power supply is 

expressed by average service availability index 
8f , 

which belongs to clear number. The service index[19]p5 

9f  mainly considers the content of demand side 

management, customer satisfaction and so on. It 

belongs to linguistic assessment term. Decision-
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makers put forward expected goal of power quality, 

which is transformed into the expected vector: 
   2.80,4.85 , 1.10,1.15 ,[0.336,0.624],[0.206,0.537],[0.40,0.84],E   

    [1.55,2.45], 0.060,0.095 , 0.855,0.945 ,G . Initial data of 

measured power quality index are shown in Tab 1.  

 

Table 1 Initial data of measured power quality index 

Observ 

points 
1 2 3 4 5 

1f  [3.21,4.28] [5.73,6.68] [4.35,5.12] [5.33,5.87] [4.22,4.79] 

2f  [1.33,1.56] [1.53,1.72] [1.82,1.95] [1.37,1.46] [1.58,1.69] 

3f  [0.672,0.763] [0.798,0.846] [0.631,0.689] [0.453,0.528] [0.516,0.592] 

4f  [0.582,0.616] [0.335,0.427] [0.516,0.586] [0.468,0.502] [0.348,0.410] 

5f  [0.83,0.92] [0.62,0.70] [1.55,1.68] [0.94,1.10] [0.95,1.06] 

6f  [2.72,2.93] [2.79,3.28] [2.67,2.81] [2.36,3.58] [2.12,2.87] 

7f  [0.093,0.098] [0.091,0.095] [0.097,0.103] [0.099,0.112] [0.096,0.098] 

8f  0.885 0.862 0.893 0.840 0.864 

9f  M MG G G M 

 

Then, based on variable fuzzy recognition model 

and cross cycle iteration calculation according to 

formula (12) ~ (13), the optimal membership matrix is 

obtained. 

*
0.6784 0.7068 0.7626 0.6235 0.6013

0.3216 0.2932 0.2374 0.3765 0.3987
hiu

 
  
 

 

optimal weight vector is: 
* [0.1175,0.1022 0.1099,0.1296 0.1106,0.1058,

0.1021,0.1090 0.1133]

  ， ，

，
 

For *

hiu , when 1h  , membership grade between 

alternatives and decision makers is expressed. 

Membership grade of each scheme is in turn 

0.6784,0.7068,0.7626 0.6235,0.6013U  ， ） . 

According to the formula (13), the cumulative 

prospect values of each scheme are calculated in order 

 0.2221,0.4308,0.3175 0.2460,0.1010P  ， . 

Finally, according to formula (14), comprehensive 

prospect value based on cumulative prospect value 

and membership grade of each scheme is calculated as 

 0.1507,0.3045,0.2421,0.1533,0.0607S  . 

Scheme ranking results based on membership grade, 

cumulative prospect value and comprehensive 

prospect value are shown in Tab 5. It can be seen that 

the optimal scheme is
3A , if sorted according to 

membership grade. The optimal scheme is
2A , if 

sorted according to cumulative prospect value. The 

optimal scheme is 
2A , if sorted according to 

comprehensive prospect value. The results show that 

expectation of scheme 
3A  is the most close to that of 

decision-makers, but prospect value of scheme 
3A  is 

worse than that of scheme 
2A . When considered 

synthetically, the final optimal scheme is 
2A .  

A  
1A  

2A  
3A  4A  

5A  Ranking 

U  0.6784 0.7068 0.7626 0.6235 0.6013 
3 2 1 4 5A A A A A     

P  0.2221 0.4308 0.3175 0.2460 0.1010 
2 3 4 1 5A A A A A     

S  0.1507 0.3045 0.2421 0.1533 0.0607 2 3 4 1 5A A A A A     

 

CONCLUSIONS 

In this paper, evaluation indexes of power quality 

has the characteristics of clear numbers, interval 

numbers and linguistic assessment terms in a certain 

monitoring period. At the same time, decision makers 

have certain expectation for indexes of power quality. 

A hybrid multi-attribute power quality synthesis 

evaluation method based on prospect theory and 

membership grade is proposed. In this method, the 

expectation of each attribute is taken as reference 

points, decision matrix of profits and losses relative to 

the reference point is established according to 

prospect theory, and the fuzzy pattern recognition 

model is established according to the generalized 

weighted Euclidean distance between the alternative 

scheme and the decision-maker undefined expectation. 

The optimal membership degree and the optimal 

attribute weight of each scheme and expected target 

are obtained. Finally, considering the foreground 

value and membership degree of each option under 

the expectation of the decision maker, the alternatives 

are sorted. This method has strong operability and 

practicability, and puts forward a new idea to solve 

the problem of comprehensive evaluation of power 

quality. The method not only deals with various data 

types in the process of comprehensive evaluation of 

power quality but also takes expectation of the 

decision-makers into consideration and incorporate 

into the model. It has strong operability and 

practicability. A new idea is put forward to solve the 

problem of comprehensive evaluation of power 

quality.  
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