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Abstract: This paper establishes a non dimensional model, considers the influence of the far field flow and 
dynamic cooling on the flat surface of the pure melt during the solidification process by using the method of 
asymptotic analysis. The ground state solution and the asymptotic solution of the solidification system are given, 
and the dispersion relation of the disturbance frequency and wave number is derived, according to this relationship, 
the stability of the solidification process of liquid solid flat interface can be determined, which can offer theoretical 
foundation for theoretical research of crystal growth and experimental work. 
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INTRODUCTION 

In the solidification process, it is important to 
study the shape and stability of liquid solid interface 
of crystal. As early as 1960s,Mullins and Sekerka put 
forward the theory of linear stability of the crystal 
plane (M - S theory) [Mullins et al.,1964].This theory 
has become an important basis for the study of the 
characteristics of liquid solid interface form . Based 
on the assumption that the perturbation wavelength is 
much smaller than the thermal diffusion length, the 
dispersion relation was introduced to determine the 
stability of the interface[Langer et al., 1978] [huang 
et al., 1981] [Bahrenberg et al., 2001] [Li et al., 
2005]. So it was obtained that in the process of the 
cold melt, the interface growth rate is much larger 
than that of the flat interface. Trivedi and Kurz 
demonstrated that the M - S theory is ineffective in 
the rapid solidification of the melt. Trivedi and Kurz 
thought that the interface is absolutely stable if the 
interface growth velocity is greater than a certain 
critical velocity[Trivedi et al., 1986]. Xu introduced 
the interfacial wave to the solid-liquid interface, and 
gained a second-order approximate solution to the 
differential equation by perturbation method, and 
pointed out that anisotropy was not a requisite 
condition for stable  state crystal growth[Xu., 1998]. 
Boettinge ret al. studied the interfacial stability 
combined with the crystal growth kinetics, but they 
put the kinetic undercooling as a linear function of 
the interface growth velocity, so derived an incorrect 
conclusion that the dynamic coefficient has no effect 
on the stability of the liquid solid interface[Boettinger 
et al., 1984] [Galenko et al., 2004]. The effect of 
crystal growth kinetics on the absolute stability of the 
interface of the fast solidified pure melt was studied 
by Li Jinfu.[Li et al., 2000]. In this paper,  we will 
establish a non dimensional model, study the 
influence of the far field flow and dynamic cooling 
on the flat surface of the pure melt during the 
solidification process by using the method of 

asymptotic analysis. The ground state solution and 
the asymptotic solution of the solidification system 
will be given, and the dispersion relation of the 
disturbance frequency and wave number will be 
obtained, according to this relationship, the stability 
of the solidification process of liquid solid flat 
interface can be determined. 

ESTABLISHMENT OF MATHEMATICAL 

MODEL AND NON-
DIMENSIONLIZATION 

Mathematical model 

    We assume that the liquid solid flat interface is at 
the beginning of the coordinate plane, and the 
interface temperature is the thermodynamic 
equilibrium temperature MT , the far field temperature 

is T ( MT T  ), the interface is moving with the 

characteristic velocity along the Z axis  direction. In 
the moving coordinate system, the temperature field 
satisfies the heat conduction equation: 
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Where LT 、 ST  are the liquid phase and solid phase 

temperature respectively, Lk 、 Sk  are liquid phase 

and solid phase thermal diffusion coefficients 
respectively. 
   The boundary conditions include: 
1) The far field condition in the liquid phase domain: 
as z  , LT T ; 

2) The side-wall condition in the solid phase domain: 
as z t  , S IT T (where IT  is the interface 

temperature); 



 
J. of Appl. Sci. and Eng. Inno., Vol.3 No.6 2016, pp. 198-201 

 

199 

3) The solid-liquid interface condition: at the 
interface ( , )z h x t , 

   The thermo-equilibrium condition:  

                     L S IT T T   

    The Gibbs-Thomson condition:  
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    The heat balance condition:  
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where   is the surface free energy, H is the latent 

heat of melt,   is the interface dynamic coefficient, 

n is the interface unit law direction(from solid phase 

to liquid phase),  
2 3 22(1 )

xx

x

h
K

h



 is the interface 

curvature, 
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 is the velocity along the 

direction from the solid phase to the liquid phase, xh  

and th are respectively the first order partial 

derivatives of x and t of the interface shape function 
( , )z h x t . 

Dimensionless mathematical model 

To get the dimensionless forms of the problem, 
we use the thermal diffusion length T Ll k V  as the 

length scale, the interface pulling velocity V is used 
as the velocity scale,  2

L V  is used as the time scale 

and ( )p LH c  is used as the temperature scale. 

Where pc is specific heat, L  is the density of the 

melt. So we can define dimensionless quantities as 
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Where we assume T S Lk k k , get the 

dimensionless equations and boundary conditions. 
But for the sake of convenience, in the following 
discussion, we shall omit the bar "-" over the 
dimensionless quantities, and still use the original 
mark. After finishing, the dimensionless equations are 
the following: 
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The dimensionless boundary conditions are: 
1) The far field condition in the liquid phase domain: 
as z  , LT T (i.e. dimensionless 

temperature
( )

M

p L

T T

H c 
 


) .                                   (3) 

2) The side-wall condition in the solid phase domain: 
as z t  , S IT T (i.e. dimensionless 

temperature
( )

I M

p L

T T

H c 



).                                        (4) 

3) The solid-liquid interface condition: at the 
interface ( , )z h x t , 

   The thermo-equilibrium condition:  

     L S IT T T 
                                             

(5) 

   The Gibbs-Thomson condition:  

       
12I IT K C MV                                      (6) 

   The heat balance condition:  
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SOLUTION OF  MATHEMATICAL 
MODEL AND   PERTURBATION 

ANALYSIS 

  From  (1) ~ (7) we can see that temperature field 
and interface conditions are free boundary value  
problem of nonlinear partial differential equations 
coupled together, it is difficult to obtain the analytical 
solution. But due to the influence of some physical 
parameters, the liquid-solid interface is very easy to 
be interfered which leads to tiny fluctuations in the 
interface. We will study the  asymptotic analysis for 
liquid-solid straight interface stability in small 
perturbations. When there is no disturbance in the 
flow field, we let the liquid-solid straight interface 

( , ) 0Bz h x t  as the interface basic state, and let 

0
x t

 
 

 
. The basic steady state solution of (1)~(7) 

is easy to be obtained: 

    
( , ) e z

BLT x z T 
 

                             
（8） 
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（9）

At the same time, the characteristic velocity of the 

interface motion is determined as ( 1)
p L

H
V T

c


 


  . 

When small perturbation appears in the 
temperature field and the interface, in order to 
analyze the linear stability of planar interface, we 
make a small perturbation to the steady state solution, 
express the solution as follows: 
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（10） 

Where the amplitude of the perturbation dynamic 

{ , , }L Sq T T h    is an infinitesimal. By substituting 

(8)(9)(10) into (1)~(7), neglecting the infinitesimal of 
higher order, we obtain the linear perturbed equations:  
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（11） 

with the boundary conditions for dynamic disturbance: 

 In far field:  as z  , 0LT 
                   

（12） 

 At the side-wall : as z t  , 0ST 
           

（13） 

At the interface ( , )z h x t  , since 1h  , we 

make the Taylor expansion along the z=0, eliminate 
the various terms of the basic solution and high order 
infinitesimal, obtain the interface conditions of  
linearization after finishing, that is, at 0z  , 
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From the form of the basic steady solution we can 
deduce the temperature gradient and the two order 
derivative of the basic state solution in the interface 

0z  : 
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    The perturbed system (11) ~ (16) contains three 
parameters: { , , }M C , where 1C  is dimensionless 

solidification temperature. The surface tension 
parameter   is a microscopic length, which is a very 
small parameter (usually 2 510 ~ 10  ) for 

solidification, so it can be set up 2  ( 1  ), and 
  is called surface tension stability parameter. M is 
the interface dynamic parameter. 
    The interface condition (14) shows that, 
when 0  , all disturbance quantity should be of the 

same order of magnitude, again by (15), ST  and h  to 

have the same order of magnitude, xxh  must be 
2( )O h  , and this is only possible when h  is a 

combination of variable function of ( )x  . So we 

introduce the following fast variables: 
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（17） 

The original variables ( , , )x z t  can be called slow 

variables, the fast and slow variables are regarded as 
independent variables, such as 0  , the asymptotic 
expansions of  perturbed solution are as follows: 

  0 1( , , , , , ) e [ ( , , , , ) ( ) ]tq x z x z t t q x z x z t q
            

    0 1( )k k k     

    0 1( )g k g   
                                 

（18） 

    0 1( )S Sg k g     

    0 1( )       

The solution of the solid phase domain is denoted 
in the form of ( )Sg  (different from ( )g   in the 

liquid phase domain). In order to obtain the 
asymptotic solution, the parameter ( )  and the wave 

numbers ( )k  , ( )g  , ( )Sg   are expanded by  . 

Further derivation shows that the first term of the 
asymptotic expansion of these wave numbers are the 
same, set to the same value 0k  as shown in (18). 

All the partial derivatives above are substituted 
as follows: 
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They can change the linear perturbation system (11) 
~ (16) to the multiple independent variables of the 
system. By letting 0  , substituting (17)(18) into 
the perturbation system, comparing the order of  of 
the two sides of the equation, we can get all order 
approximate equations. 

Assuming 0 (1)k O , the zeroth order 

approximation can be derived that  
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with the boundary conditions: 

  as z  , 0 0LT 
                                      

（21） 

  as z  , 0 0LT   

  as z   , 0 0ST 
                                     

（22） 

  as 0z z   , 0 0 1 0L ST T G h   
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where 1 1 1L SG G G   . The above system (20)~(25) 

has regular solution: 
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In general, the amplitude function 0 0
ˆ ˆ{ , }L SA A can 

be a slow variable function, 0D̂ can be a function 

of{ , }x t . But as the first approximation is the result, 

they can be set to a constant. Substituting (26)into the 
(23)~(25), we have 

          

0 0 1 0

2 1
0 0 0 1 0 0 0

0 0 0 0 0

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ( ) 0

L S

S S

L T S

A A G D

A k D G D C M D

k A k A D







   
    

   

          

(27) 

This is a linear equation set about 0 0 0
ˆ ˆ ˆ( , , )L SA A D , 

and the necessary and sufficient condition for the 
existence of nonzero solutions is: the value of the 
coefficient determinant is zero. Namely 
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After simplification, it can be derived that 

  
1

0 01 (1 )TC M k k          

        
2

0 1 1 0( ) (1 )L T S Tk G k G k k                       
(28) 

This formula is the dispersion relation between 
frequency and wave number. 

CONCLUSION 

The stability of the planar interface in 
undercooled pure melts relies on the sign of the 
frequency . When   is positive, the system has a 
growth model solution, the interface is instable; when 
the  is negative, the system has a decay mode 
solution, the interface tends to be stable; when the   
is zero, the system has a neutral mode solution. Since 
the latter term of the asymptotic expansion of   is 
much smaller than the previous one, the value of  is 
mainly determined by 0 . From (12),(17),(21), we 

know that 0k  is positive real number(otherwise the 

perturbation solution will tend to infinity) and all 
terms in the left bracket of the equation are positive in 
(28). Therefore, the positive and negative of 

0 depends on the sign of (29). 

    
2

1 1 0(1 )L T S TF G k G k k   
                       

(29） 

If 1 1 0L T SG k G  , then 0F  , for any wave number, 

the system will always be stable. If 1 1 0L T SG k G  , 

the stability of the system depends on the value of the 
wave number 0k . In particular, if L Sk k , then 

1Tk  . Substituting  1 1LG    , 1 0SG   into (29), 

we have 

                   
2
01 2F k  

                                     
(30) 

Therefore, when 0 1 2k  , the system has the 

attenuation model solution, which is consistent with 
the condition of the short wave disturbance is 
attenuated, the liquid-solid interface tends to be stable; 

When 00 1 2k  , the system has the growth 

mode solution, which is consistent with the condition 
of the long wave disturbance is growth, the liquid-
solid interface is instable. 

This paper considers kinetic undercooling of the 
crystal growth on the liquid-solid interface, makes the 
asymptotic expansion for the perturbed solution of 
the governing equations, and derives the dispersion 
relation of unsteady solidification system with 
asymptotic method, then proposes the discrimination 
condition of the stability under the straight interface 
solidifying, reveals the mechanism of the liquid solid 
flat interface to the cellular crystal interface during 
the solidification process, which has offered 
theoretical foundation for theoretical research of 
crystal growth and experimental work. 

ACKNOWLEDGMENT 

This work was supported by Funding Project for 
Beijing key laboratory of intelligent logistics 
system(NO:BZ0211); Funding Project of Beijing 
Intelligent Logistics Collaborative Innovation Center. 

REFERENCES 

Bahrenberg S. V. , Coryell S. R. ,2001, “Mcfadden G. 
B. .Morphological stability of a binary alloy: 
thermodiffusion and temperature-dependent diffusivity ”, 
J.Crystal Growth, Vol. 223, pp: 565-572. 

BoettingerW.J. ,Coriell S. R. ., 1984, “Mechanisms of 
microsegregation-free solidification ”, Mater. Sci. Eng. 
A,Vol.65, pp: 27-36. 

Galenko P. K. ,Funke O. ,Wang J. . Herlach D. M. , 2004, 
“Kinetics of dendritic growth under the influence of 
concective flow in solidification of undercooled 
droplets”, Mater. Sci. Eng.A, Vol. 375, pp488-492. 

GlicksmanM.E. ,Lupulesal A. O. ,2004, “Dendritic crystal 
growth in pure materials”, J. Crystal Growth, Vol.264, pp: 
541-549. 

Huang S. C. ,Glicksman M. E. ,1981, “Fundamentals of 
dendritic solidification: ( I) steady-state tip growth ”, 
Acta. Metal, Vol. 29, pp: 701-715. 

Langer J S, Muller-Krumkhaar. H. ,1978, “Theory of 
dendritic growth: ( I) elements of a stability analysis ”, 
Acta.Metal, Vol.26, pp: 1681-1687. 

Li Shuwang, Lowengrub J. ,Lowengrub J. , Leo 
P. .CristiniV. ,2005, “ Nonlinear stability analysis of 
selfsimilar crystal growth: control of the Mullins-Sekerka 
instability”, J. Crystal Growth, Vol.277, pp: 578-592. 

MullinsW. W. ,Sekerka R. F. , 1964, “ Stability of a planar 
interface during solidification of a dilute binary alloy”, 
J.Appl. Phys, Vol.35, pp: 444-451. 

Trivedi R. ,KurzW. .,1986, “Morphological stability of a 
planar interface under rapid solidification conditions ”, 
Acta metal, Vol.34 (8), pp : 1663-1670. 

Xu J. J. ,1998, “ Interfacial wave theory of theory 
formation”,  Berlin Heidelberg: Springer-Verlag. 

  


